在过去十年中,有机/无机杂化钙钛矿太阳能电池的光电转换效率已经快速增至25.5%,且具有组装工艺简单、成本低廉以及可低温制备等优势,有望成为硅基太阳能电池的最佳替补,此外,钙钛矿太阳能电池在全固态和柔性器件的有潜在前景,这对于未来的可穿戴设备技术非常有吸引力。
然而钙钛矿太阳能电池在未来产业化应用方面仍面临严峻挑战:(1)当钙钛矿太阳能电池的面积提升后其效率会急剧下降;(2)目前高效率钙钛矿太阳能电池通用的旋涂制备方法只适用于实验室小面积研究,并不适合高通量大面积生产,钙钛矿太阳能电池在可印刷连续化制备方面的研究相对欠缺。(3)现阶段普遍用蒸镀贵金属(如金,银)作为顶电极来制备高效率钙钛矿太阳能电池,这就很大限度上提升了电池的成本。(4)钙钛矿太阳能电池工作稳定性问题需要亟需解决。
在这篇综述中,苏州大学杨甫副教授和德国埃尔朗根-纽伦堡大学Christoph J Brabec教授从钙钛矿薄膜结晶生长、大面积制备技术、大面积器件性能研究进展、提升大面积钙钛矿组件效率的策略(物理和化学方面)、大面积组件方案的设计以及组件的工作寿命等方面,总结和分析了基于溶液法的大面积钙钛矿光伏印刷工艺的研究进展和挑战。
在此分析的基础上,提出了推进稳定高效的大面积钙钛矿光伏产业化化发展的策略和机遇。
Figure 1.(a) Progress in perovskite solar cell efficiency on small area during the last decade. (b) Efficiency progress of PSCs prepared by different coating techniques related to active area (for active areas above 1 cm2). (c) Cost distribution of perovskite solar modules based on the cell stack shown on the right.
Figure2.(a) Conventional LaMer model: the concentration changes of the perovskite precursor solution as a function of time at a constant evaporation rate of the DMF solvent. (b) And the material nucleation/growth competition model under slow solvent evaporation and fast solvent evaporation.
Figure 3.Submissionof the reports (2014-2018, 2019-2021) on large-area (≥ 1 cm2)perovskite devices.
Figure 4.(a) Strategies to control nucleation and film formation for scaling up perovskite absorber films. (b) Traditional commercial organic HTMs for PSCs.
Figure 5.(a) Bill of materials calculated from the processes in spin-coating 1cm2 perovskite solar cells. (b) The suggested Stage-Gate process for the development of a perovskite device application. The gates have to be defined according to the application and should follow the critical key performance indicators (KPIs) for photovoltaics.
参考文献:
Yang, F., Jang, D., Dong, L., Qiu, S., Distler, A., Li, N., Brabec, C. J., Egelhaaf, H.-J., Upscaling Solution-Processed Perovskite Photovoltaics. Adv. Energy Mater. 2021, 2101973.
https://doi.org/10.1002/aenm.202101973
https://onlinelibrary.wiley.com/doi/10.1002/aenm.202101973